
J Stat Phys (2008) 131: 597–611
DOI 10.1007/s10955-008-9513-3

Two Hard Spheres in a Spherical Pore: Exact Analytic
Results in Two and Three Dimensions

Ignacio Urrutia

Received: 3 August 2007 / Accepted: 27 February 2008 / Published online: 19 March 2008
© Springer Science+Business Media, LLC 2008

Abstract The partition function and the one- and two-body distribution functions are eval-
uated for two hard spheres with different sizes constrained into a spherical pore. The equiva-
lent problem for hard disks is addressed too. We establish a relation valid for any dimension
between these partition functions, second virial coefficient for inhomogeneous systems in
a spherical pore, and third virial coefficients for polydisperse hard spheres mixtures. Using
the established relation we were able to evaluate the cluster integral b2(V ) related with the
second virial coefficient for the Hard Disc system into a circular pore. Finally, we analyse
the behaviour of the obtained expressions near the maximum density.

Keywords Hard spheres · Configuration integral · Exact results · Confined fluids · Small
systems · Inhomogeneous fluids · Spherical interfaces · Spherical wall

1 Introduction

The Hard Spheres (HS) and Hard Disks (HD) systems have attracted the interest of many
physicists owing to they constitute prototypical simple fluids. Hard-core models, such as
HD and HS are paradigmatic entropy driven systems. The search of their accurate equa-
tion of state is a long-standing problem of great importance in statistical mechanics [1–14].
The evaluation of virial coefficients [1–4, 15–23] and the analysis of phase transitions
[14, 24, 25] are some of the principal subjects. The monodisperse systems as well as bidis-
perse and polydisperse ones have been extensively studied.

Recently special attention was paid to systems of few HS and HD confined in small
vessels. The study of these inhomogeneous systems has shed light on aspects of loss of
ergodicity [26], freezing and glass transitions [27, 28], thermodynamic second law [29], and
other fundamental questions of statistical mechanics and thermodynamic [30, 31].
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Exact and approximate analytic properties of hard spherical bodies at different dimen-
sions have been very important in the evolution of Free Energy Density Functional Theories
for HS [32, 33]. Besides its own relevance the HS system is the starting point of several
approximate theories of liquids [34, 35], therefore exact analytical results become still more
interesting. Even though the apparent simplicity of HS and HD fluids, a few exact analytical
results are known at present. For homogeneous systems the third and fourth virial coeffi-
cients for HS and HD have been calculated on the monodisperse [22, 36–39] and polydis-
perse systems [40–42], numerical results for higher order terms have also been obtained
[43–45]. In addition, for inhomogeneous systems of HS into a spherical pore the analytic
expression for the second virial coefficient is known [46]. Until present the exact canonical
partition function of few bodies in a pore has been solved for two HD [47] and recently for
two HS [48], in a rectangular box. Such results for equal sized particles were compared with
dynamical simulation approaches [31, 49, 50]. The three HD in a rectangular box problem
was analyzed [51] but the complete integration of its configuration integral (CI) could not
be performed. Exact analytic results exist for the zero-dimensional limit, which corresponds
to a so narrow cavity that is able to contain one particle at most. Also, several exact results
have been obtained for the Hard Rod system (HR) the 1D version of HS [15, 52–54] which
actually may be considered completely solved.

The aim of the present work is to evaluate the canonical partition function for two spheri-
cal particles in a spherical pore at two and three dimensions. Expressions for the free energy
and one particle density are also derived. In Sect. 2 of this work we show that in the canon-
ical ensemble a spherical pore containing HS or HD can be seen as another particle. We
establish a relation between the CI of the canonical partition function for N polydisperse
hard spherical particles and the respective CI for N − 1 particles inside a spherical vessel.
In Sect. 3 we evaluate the canonical partition and density distribution functions for two HD
and HS into a spherical pore. The obtained expressions apply to the non additive system
of unequal sized particles in a pore, which includes the more usual and restrictive additive
system. The analysis of the CI expressions and the thermodynamic properties of the system
are shown in Sect. 4. Finally in Sect. 5 we present our conclusions.

2 The In–Out Diagram Relation

In this section we will refer to non additive HS, but the discussion also applies to HD and
to the equivalent system in any dimension. We are interested in a system with fixed num-
ber of particles (N) and temperature, then we will consider the canonical ensemble. In such
ensemble the partition function factorizes into CI and a trivial kinetic terms. The CI of the
system is characterized by the set of hard repulsion distances between each pair of particles
{dij }. The system is additive only if the repulsion distances are dij = Ri + Rj for positive
radii of particles {Ri}. When the above relation is not fulfilled or any other particular as-
sumption is made on the set {dij } the system is non additive. We will analyze the CI for a
N-HS system in an open (and virtually infinite) volume (QN ). In order to obtain a non-null
contribution to the integral, each pair of particles ij must fulfill rij > dij , where rij is the
distance between particles ij . The above relation between rij and dij is a consequence of
the exponential Boltzmann’s factor. Then we have

QN =
∫

. . .

∫ ∏
〈ij 〉

eij dr1 . . . drN , (1)
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eij = exp(−φij (rij )) =
{

0 if rij ≤ dij (overlap),

1 if rij > dij (no overlap),
(2)

where φij (rij ) is the hard core spherical potential for the pair of particles ij . In virial series
and related subjects this factor is usually named f̃ , however in the framework of canonical
partition function it appears naturally as an exponential function. Then we prefer to name
it e or eij function or simply an e-bond, which will be plotted as a dashed segment. Such a
QN can be expressed as a Ree-Hoover’s graph (also called modified star graph) [22, 36]

QN = , (3)

where the N -th particle at (3) was drawn separately and its e-bond appears explicitly. The
remaining (N − 1)-particle system with e-bonds between pairs is outlined as a rectangular
box. The relation between the Mayer f function (or f -bond) and e is given by

eij = 1 + fij , (4)

fij =
{−1 if rij ≤ dij (overlap),

0 if rij > dij (no overlap).
(5)

We can transform each e-bond that links the pairs Ni (i : 1, . . . ,N − 1) through the usual
bond relation (4) performing the decomposition over particle N

QN = = + + + · · · + . (6)

In this representation all the equivalent graphs on the left of (6) that takes into account
permutations of the N −1 particles were omitted for clarity. It is possible to map this general
problem to the N -HS additive system defined by the set of particle radii {Ri} through the
assignment dij = Ri + Rj . We define the additive/subtractive generalization of the additive
system by the assignment dij = |Ri ± Rj |, and specifying which set of pairs assume the
minus sign. If we are interested in a system of additive spheres contained in a spherical
vessel, as is our case, the exclusion distances between the center of the pore (which is the
N -particle) and the center of each i-particle is diN = (P − Ri), where P is the radio of
the spherical pore. We name to this specific additive/subtractive {dij } as an additive-in-pore
system.

Through the assignment of {dij } for an additive-in-pore system, the last graph of (6) may
be interpreted as the CI of (N − 1) additive HS in a pore (QP

(N−1)), due to the condition
riN ≤ diN with 1 ≤ i ≤ N − 1 imposed by the f -bonds in (5). Therefore {diN } in that graph
should be named inclusion (and not exclusion) distances. More precisely, last graph is V∞
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times QP
(N−1), being V∞ the volume of the infinite space,

QP
(N−1) = V −1

∞

∫
. . .

∫ ∏
〈iN〉

fiN

∏
〈ij 〉

eij dr1 . . . drN−1drN,

=
∫

P

· · ·
∫ ∏

〈ij 〉
eij dr1 . . . drN−1, (7)

where the integration domains depend on pore size P . From now on, last graph of (6) will
be called the (N − 1)-in-pore graph, even in the more general framework of non additive
systems. If we have N − 1 equal (and additive) hard spheres of radio σ/2 into a pore of
radio P , on the additive-in-pore picture we assign diN = (P − σ/2). The same system can
be analyzed as an entirely additive system with diN = (P − σ) + σ/2, if P > σ . We can
obtain a Mayer type decomposition by transforming iteratively each e-bond in (3, 7) by an
f -bond.

3 Two Bodies in a Pore

In this section we will apply the in–out relation for three bodies. In (8) we perform the
simple decomposition over the particle P and show the relation between the 2-particles-in-
pore graph and the Mayer type graph

(8)

All the integrals in (8) may be directly evaluated, the easiest are the simply connected graphs
that become factorable [55]. In the evaluation of different graphs we will use the notation
of [42]. The exclusion/inclusion distances between pair of spheres are AB, PA, PB. Being
that {AB,PA,PB} are completely independent we deal with a non-additive system. Now we
will briefly analyze the two bodies or one body in a pore problem. Assuming that PA is the
exclusion/inclusion distance between A and P , we have for HS

= Sp(PA), (9)

= V∞ − Sp(PA), (10)

Sp(R) = 4π

3
R3, (11)

where Sp(R) is the volume of the sphere of radio R. Equation (9) is the accessible volume
for a particle in a pore with inclusion distance PA (eventually PA = P −A), which is related
to the second coefficient of the pressure virial series [42] for a mixture of two HS gases. The
CI of two spheres with a repulsion distance PA (eventually PA = P + A) is given by (10),
where V∞ is the volume of the total space. These obviously are not novel results.
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Table 1 Relation between the set of zeta functions {Z,Z′
I,Z

′
II,Z

′′} and the integration of one dark particle
linked with two other white particles. Note that in Z′

I and Z′
II, R1 is the repulsion distance with the left white

sphere, while R2 corresponds to the right one, with R1 ≥ R2

Z ≡ Z(r,R1,R2) Z′
I(r,R1,R2) Z′

II(r,R1,R2) Z′′(r,R1,R2)

HS Sp(R1) − Z Sp(R2) − Z V∞ − Sp(R1) − Sp(R2) + Z

HD Cr(R1) − Z Cr(R2) − Z V∞ − Cr(R1) − Cr(R2) + Z

3.1 Two Spheres in a Pore

Now we focus on the two spheres in a pore problem and then we need to integrate the
2-in-pore graph (left-hand side graph on second row of (8)). Before integral evaluation we
may state that some set of values {AB,PB,PA} produce a zero sized graph, since A and B

spheres may not enter into the pore P . If AB > PA + PB, then (2) and (5) imply that rAB >

rPA + rPB thus avoiding the triangular relation and therefore the 2-in-pore graph becomes
zero. From now on we will assume AB ≤ PB + PA and PB ≥ PA, which is compatible with
a pore of radius P that contains two particles of radius A and B (P ≥ A + B) with A ≥ B .

For the calculus of density distribution it is useful introducing the function Z(r,R1,R2)

[42], which represents the volume of intersection of two spheres of radius R1 and R2 sepa-
rated by a distance r (assuming R1 ≥ R2)

Z(r,R1,R2) =

⎧⎪⎨
⎪⎩

Sp(R2) for r ≤ R1 − R2,

I2(r,R1,R2) otherwise,

0 for r > R1 + R2,

(12)

I2(r,R1,R2) = π

12 r
(R1 + R2 − r)2

(
r2 − 3(R1 − R2)

2 + 2r (R1 + R2)
)
. (13)

The function I2(r,R1,R2) is the volume in the partially overlapping configuration, and is
symmetric through the permutation R1 ↔ R2. Other functions related with Z(r,R1,R2) are
summarized in Table 1 (the extended form definition of Z functions is displayed in Appen-
dix A). This set of functions is related with the integration of one spherical body linked with
other two. As we have two types of bonds e and f there are four different Zeta functions.
The use of these functions accounts us to write down two relevant distribution functions in
a simple way: the pair distribution function g2(rAB) (in which the position of the pore center
was integrated) and the one body distribution function of one particle ρ1(rA). Both, rA and
rB have their origin in the center of the pore

g2(rAB) = (
QP

2

)−1
eABZ(rAB,PB,PA), (14)

ρ1(rA) = (
QP

2

)−1
(−fPA) ×

{
Z′

I(rA,PB,AB) for AB ≤ PB,

Z′
II(rA,AB,PB) for AB > PB,

(15)
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ρ1(rB) = (
QP

2

)−1
(−fPB) ×

{
Z′

I(rB,PA,AB) for AB ≤ PA,

Z′
II(rB,AB,PA) for AB > PA,

(16)

where ρ1(rB) is equivalent to ρ1(rA) through the transformation A ↔ B in (15). Performing
the complete integration (for example, in (14)), we found the CI for two HS in a pore

QP
2 =

∫ PA+PB

AB
4πr2

ABZ(rAB,PB,PA)drAB, (17)

QP
2 =

⎧⎪⎪⎨
⎪⎪⎩

π2

18 (PA + PB − AB)3(AB3 + 3AB2(PA + PB)

− (PA + PB + 3AB)((PA − PB)2 − 2PA PB)) for AB ≥ PB − PA,

16π2

9 PA3(PB3 − AB3) for AB < PB − PA,

(18)

which is valid as long as AB ≤ PA + PB, whereas QP
2 = 0 if AB > PA + PB. There are

explicit relations between the non additive, the additive, and the additive-in-pore systems.
These are expressed in (19) and (20) respectively, which allow the map from one to other
system when the triangular relation is fulfilled

AB = A + B, 2A = AB + PA − PB,

PB = P + B, 2B = AB − PA + PB,

PA = P + A, 2P = −AB + PA + PB,

(19)

AB = A + B, 2A = AB − PA + PB,

PB = P − B, 2B = AB + PA − PB,

PA = P − A, 2P = AB + PA + PB.

(20)

Thus, using (20) we may evaluate the CI of two additive spheres in a pore

QP
2 =

(
4π

3

)2

(P − A − B)3
(
P 3 + 3PAB − A3 − B3

)
, (21)

above expression is valid for P ≥ A + B , whereas QP
2 = 0 if P < A + B . With the aim of

check, using (8, 18, 19) we have obtained the third virial coefficient in the additive polydis-
perse system [41, 42] the right-hand side graph on second row of (8). In addition, in the case
of equal sized spheres with radii A we obtain

QP
2 =

(
4π

3

)2

(P − 2A)3
(
P 3 + 3 A2P − 2A3

)
, (22)

QP
2 =

(
4π

3

)2

(P −A)6 −
(

4π

3

)2

(2A)3 (P − A)3 +π2(2A)4 (P − A)2 − π2

18
(2A)6. (23)

These two equations are equivalent. In (22) it seems clear the existence of a root on QP
2

at P = 2A. On the other hand, (23) shows the volume and area dependence, being V =
(4π/3)(P − A)3 and Ar = 4π(P − A)2. A simple relation connects QP

2 with the second
cluster integral b2(V ) (which was stated in the second row of (8)); due to b2(V ) has been
analytically evaluated in previous works [46] we were able to check the validity of our result.
Distribution functions for two additive spheres in a pore are shown in Appendix B.
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3.2 Two Disks in a Pore

The two-dimensional problem of two HD in a circular pore is very similar to the problem
of two HS in a spherical pore in three dimensions. Therefore we will briefly outline the
aforementioned analysis concerning HD. In the two particle system or one disk in a pore,
we obtain

= Cr(PA), (24)

= V∞ − Cr(PA), (25)

Cr(R) = πR2, (26)

where Cr(R) is the surface area of the circle with radio R. To maintain an unified point of
view for both systems, HD and HS, we name the measure of the total space V∞ (although
it is actually an area). Equation (24) is the accessible area for a particle in a pore with an
inclusion distance PA (eventually PA = P − A), which is related to the second coefficient
of the pressure virial series on a mixture [42]. The configuration integral of two disks with
repulsion distance PA (eventually PA = P + A) is given by (25). For the two disk in a pore
problem we have

Z(r,R1,R2) =

⎧⎪⎨
⎪⎩

Cr(R2) for r ≤ R1 − R2,

I2(r,R1,R2) otherwise,

0 for r > R1 + R2,

(27)

I2(r,R1,R2) = R2
1 arccos

[
r2 + R2

1 − R2
2

2rR1

]
+ R2

2 arccos

[
r2 − R2

1 + R2
2

2rR2

]

− 1

2

√
(r + R1 + R2)(−r + R1 + R2)(r − R1 + R2)(r + R1 − R2).

(28)

The function I2(r,R1,R2) is the surface area in the partially overlapping configuration. The
set of functions related with Z(r,R1,R2) for disks are summarized in Table 1 (see the full
extended form in Appendix A). On terms of the set of Z functions it is possible to write
down the pair distribution function g2(rAB), and the one body distribution function ρ1(rA)

g2(rAB) = (
QP

2

)−1
eABZ(rAB,PB,PA), (29)

ρ1(rA) = (
QP

2

)−1
(−fPA) ×

{
Z′

I(rA,PB,AB) for AB ≤ PB,

Z′
II(rA,AB,PB) for AB > PB,

(30)

where ρ1(rB) is equal to ρ1(rA) under the transformation A ↔ B in (30). Both, rA and rB ,
have their origin in the center of the pore. Performing the complete integration of (29), for
example, we find the partition function for two disks in a pore

QP
2 =

∫ PA+PB

AB
2πrABZ(rAB,PB,PA) drAB, (31)
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QP
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πκ(PB2 + PA2 + AB2) + πPB2PA2
(
π − arccos

[
PB2+PA2−AB2

2PBPA

])

− πPB2AB2 arccos
[

PB2−PA2+AB2

2PBAB

]

− πPA2AB2 arccos
[−PB2+PA2+AB2

2PAAB

]
for AB ≥ PB − PA

π2PA2(2PB2 − AB2) for AB < PB − PA,

(32)

κ = 1

4

√
(PB + PA + AB)(−PB + PA + AB)(PB − PA + AB)(PB + PA − AB), (33)

where κ represents the area of the triangle with sides PB, PA, AB. The arguments of the
arccosine function in (32) are the internal angles of this triangle and their sum is π . In
particular, for the additive in pore system with different sized disks, the previous equation
can be simplified

QP
2 = 2πκ

(
P 2 + A2 + B2 − P (A + B) + AB

)

+ π(P − B)2(P − A)2

(
π − arccos

[
P 2 − P (A + B) − AB

(P − B)(P − A)

])

− π(P − B)2(A + B)2 arccos

[
P (A − B) + B2 + AB

(P − B)(A + B)

]

− π(P − A)2(A + B)2 arccos

[−P (A − B) + A2 + AB

(P − A)(A + B)

]
, (34)

κ = √
PBA(P − A − B). (35)

Equation (34) applies in the case P ≥ A + B , whereas QP
2 = 0 if P < A + B . Using (8, 19)

and (34) the third virial coefficient is correctly obtained in the additive polydisperse sys-
tem [40]. By evaluating the above expressions for two disks with equal radii, we find

QP
2 = 2πA

√
P (P − 2A)

(
(P − A)2 + 2A2

)

+ 2π(P − A)2
(
(P − A)2 − (2A)2

)
arccos

[
A

P − A

]
, (36)

or

QP
2 =

(
128

15

√
2πA3/2

)
(P − 2A)5/2

×
(

1 + 19

28A
(P − 2A) + 9

224A2
(P − 2A)2 + O3(P − 2A)

)
. (37)

Equation (36) has a root at P = 2A. Thus, in (37) we study the local behaviour of (36) near
its root. Distribution functions for two additive disks in a pore is discussed in Appendix B.

4 Results

Let us make a few remarks on the new results obtained in this work. The configura-
tion integral in (18, 32) are analytical functions of the system parameters in the domain
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AB,PA,PB > 0 except when we focus on the non additive regime for AB = PB − PA. From
here on we will restrict ourselves to AB ≤ PA + PB. For HS the configuration integral is
polynomial, although it is not true for HD. In the two additive bodies in a pore system, the
CI (21, 34) become null at close packing pore size PCP = A+B , even though systems do not
lose the rigid rotation degrees of freedom. Over all density range P ∈ (PCP,+∞) CIs are
monotonic analytic functions, therefore, none ergodic/non-ergodic transition happens and
no van der Waals loop is expected [47, 51].

As we are interested in thermodynamic properties we analyze the Free energy of the
system. Taken into account the kinetic factor, which contains the temperature dependence
and usual thermodynamic relations we obtain the entropy S

S/k = −βF + βU = ln
(
QP

2

)
, (38)

where U is the energy of the ideal gas (βU = 2,3 for two HD and HS, respectively). An im-
portant result derived from (21, 34) is that the Free Energy diverges logarithmically at PCP.
In order to obtain the pressure we need to define the system volume Vsys, both magnitudes
are related by

βPW = d ln(QP
2 )

dVsys

∣∣∣∣
β

= d ln(QP
2 )

dP
(V ′

sys)
−1

∣∣∣∣
β

, (39)

where V ′
sys is the area of the surface enclosing Vsys. A particular volume definition implicitly

induce a surface definition and then only modifies the surface area in (39). Although we are
considering a small and very simple system composed by solely two hard spherical particles
in a pore, it is not obvious which is the system volume. In principle, three different volumes
may be considered, the volume accessible to the particle A, that is VA; the same for the B

particle i.e. VB (see (9, 24)); and the volume of the free space in the pore. The later may be
interpreted as the accessible volume for a particle with a vanishing radio and does not depend
on the size of the chosen particle. We propose that VA and VB are the relevant volumes. In
such a case the pressure on the wall became

βPW = d ln(QP
2 )

dVA

∣∣∣∣
β,VB

+ d ln(QP
2 )

d VB

∣∣∣∣
β,VA

, (40)

βPW = ρ1(rA = P − A) + ρ1(rB = P − B), (41)

where (40, 41) are generalizations of Dalton’s Law, and the equivalence between them is
trivial.

For the sake of clarity from here on we will analyze the system of two equal sized parti-
cles, i.e. B = A and PCP = 2A. An interesting point about (23) for two HS, is the fact that
it has the simplest possible shape. Indeed, each term has a very simple mean. The first term
refers to the ideal gas, while the second term is clearly related to the first virial series correc-
tion (due to the interaction between particles) both of them appear in the homogeneous two
body system. The third term is the product between the area of the system and the second
surface virial coefficient at a planar hard wall W2 [56–60]. Finally the fourth term forces the
root of CI at P = PCP. From (22) and (37) the CI goes to zero at PCP with multiplicity 3
and 5/2 for HS and HD, respectively, and its value for two HD in a square box is 4 [47].
The mean of such values are probably related to the number of degrees of freedom lost at
the ultimate solid or CP density. The logarithmic divergence of the Free Energy and (40)
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induce an order one pole at the maximum density. The equations of state for HS and HD
are, respectively,

βPW = 1

4π(P − 1)2

(
3

(P − 2)
+ 5

4
− 9

16
(P − 2) + O2(P − 2)

)
, (42)

and

βPW = 1

2π(P − 1)

(
5/2

(P − 2)
+ 19

28
− 149

392
(P − 2) + O2(P − 2)

)
. (43)

Here, we choose A as the unit length. Note that (42) and (43) are truncated forms of the
equation of state but the exact complete expressions can be easily derived from (22, 36,
40). It seems that some of the afore analyzed properties about the ultimate solid are valid
for any finite number of particles N . That is, the CI must go to zero at some P = PCP(N)

value with a multiplicity α−1(N), which is a positive real number. This characteristic implies
the logarithmic divergence of the Free Energy and induces an order one pole on PW at the
maximum density. Then we conjecture that the equation of state near the ultimate solid
density, takes the form

βPW = 1

ΩD (P − 1)D−1

(
α−1

(P − PCP)
+ α0 + α1(P − PCP) + O2(P − PCP)

)
, (44)

where D is the dimensionality of the system and ΩD is the solid angle integral. This last
equation can be rewritten in the following way

βPW

V

N
= α−1

ND

(
1 − (Vo/V )1/D

)−1 + α0(PCP − 1)

ND

+ α0 + α1(PCP − 1)

ND
(P − PCP) + O2(P − PCP), (45)

where V = ΩD (P − 1)D/D and Vo = ΩD (PCP − 1)D/D. It is interesting to mention that
first term of (45) is equal to the equation of state for the bulk solid phase of HS and HD
systems at the highest density limit [61–64].

As was mentioned before, CIs are monotonic analytic functions, then the pressure is a
monotonic analytic function of P ∈ (2,+∞) and does not develop a van der Waals loop.
This is not the case for two and three HD in a rectangular box [31, 47, 51]. In Fig. 1 we
display the equations of state (42, 43) as a function of pore size, both of them diverge at
P = 2. For comparison, the equation of state for two HD system confined in a square box
pore is also plotted, being the size parameter P one half side of the square. The equation of
state for two HD in a square box has two branches that are joined on a non analytic point
at P = 2, while the divergence appears at P = PCP = 1 + 1/

√
2 and takes place when the

discs are fitted on the two opposite vertices of the box. These two equations of state for two
HD on different shaped pores converge as the pore size grows. Present results of βPW for
HS perfectly agree with the Monte Carlo results [65] (extracted from Fig. 1 on that work)
which were obtained by numerical integration of the same equations.

The density distribution of one HS particle corresponding to a system with two equal
sized HS (see (56) in Appendix B) has been plotted on Fig. 2. Density profiles for several
radii of the pore P are shown in this figure by a solid line, each curve has a maximum at
r = P − 1 and fall off to zero discontinuously for r > P − 1. Density distributions change
gradually from the complete radial localization, when P = PCP = 2 to the quasi-uniform
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Fig. 1 (Color online) Equation
of state for two HD and HS.
Continuous curves correspond to
HD (up) and HS (down)
calculated in the present work.
For comparison, we also include
the results for: two HD in a
square box [47] (dashed line),
and Monte Carlo simulation for
two HS in a spherical pore [65]
(circles)

Fig. 2 (Color online) Density
profiles for two HS system as a
function of r for various P

values. Both, P and r are in units
of A. Continuous lines indicate
results for pore radii
P = 2.01,2.5,3,3.5,4. Other
curves are referred to top
abscissa axis. Dashed curve
shows density at central point
ρ(P, r = 0), whereas dot-dashed
curve corresponds to density at
contact ρ(P, r = P − 1). The
dotted curve is the shifted
dot-dashed one (see text)

distribution at P = 4. For a pore size P > 3 the density at r = 0 becomes non null and a
constant density plateau develops for 0 < r < P − 3. The dashed and dot-dashed curves
show the evolution of the minimum (at r = 0) and the maximum (at r = P − 1) values of
the density profiles as a function of pore radio P . The dotted curve indicates once again the
contact density ρ(P, r = P − 1), which is related to the pressure of the system by (41), but
now as a function of P − 1. These three lines are functions of pore size, and refer to the top
abscissa axis. We find that all these properties are also exhibited by the two HD in a circular
pore system. We can mention that at P = 3.4069 the central density reaches its maximum
value, which is close but greater than half of the density at contact.

The complete dependence of the second cluster integral b2(V ) for a system of parti-
cles contained into a spherical vessel is related to the second virial coefficient by B(V ) =
−b2(V ). From (8) we obtain

V b2(V ) = 1

2

(
QP

2 − V 2
)
. (46)
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Using (22) we derived b2(V ) for two equal HS in a spherical pore,

V b2(V ) = b2V + 2πA4Ar −
(

4

3
π

)2

A6, (47)

where V = ( 4π
3 )(P −A)3, b2 = − 2π

3 (2A)3, and Ar = 4π(P −A)2. As was discussed before
(in Sect. 3.1) this expression was previously calculated in literature [46]. For the first time,
we present the complete dependence of b2(V ) for a HD system into a circular vessel. Then,
using (36) and (46)

V b2(V ) = b2V + 1

3
(2A)3Ar − 1

60
π(2A)5 1

(P − A)
+ O3

(
1

P − A

)
, (48)

where V = π(P −A)2, b2 = − 1
2π(2A)2, and Ar = 2π(P −A). Actually V is the accessible

area (see (26)) and Ar is its perimeter. Although in (48) we choose express b2(V ) as a
truncated series expansion of the complete expression, the exact form of b2(V ) (for two
HD and HS with equal or unequal size) may be obtained with the same procedure. The
factor multiplying Ar is the second virial coefficient of the surface tension (in fact the linear
tension) W2 [56–60], as far as we know it was not previously evaluated. The third term is
the first finite size-curvature correction and it has a minus one power on (P − A), which is
two units smaller than the former term as happens in HS at (47). All the forthcoming terms
of the series (not shown in (48)) are negatives with odd degree in (P −A)−1. The expansion
of (48) converges so quickly that, if we truncate at fifth order, the deviation is smaller than
one percent in the worst case for P = 2A, when the system attains its highest density.

We can mention that CI of two Hard Rod system confined into a segment (the one di-
mensional equivalent of two HD and HS in a spherical pore) is easy to evaluate analytically
[15, 52–54]. Then, this work provides a set of analytic properties for dimensions D = 1,2
and 3, and any general approximate theory for inhomogeneous confined liquid phase [33]
may be compared with these exact results.

5 Conclusions

We have established a deep relation between CI of a N -polydisperse system of hard spheres,
CI of a (N − 1)-polydisperse system in a spherical shaped pore, and Mayer type diagrams
[35, 55]. The relation valid in any dimension was used in the present work only for checking
purposes. A similar relation was stated previously in the Gran Canonical Ensemble [46].

The canonical partition and distribution functions of two HS and two HD in a spherical
shaped pore were analyzed in an exact analytic framework. The analysis presented here was
made assuming a very general system of two HD and HS, with different sizes and non ad-
ditive potential. The obtained exact CI expression allow us to evaluate the thermodynamic
observables of the system (Free Energy, Energy, Entropy, Pressure, etc.) [35, 55]. In addi-
tion, we investigate the analytic properties of CI and the equation of state at the ultimate
solid or cp density, and we compare our results with the known exact result of two HD con-
fined in a square box. Based on this study we present a general proposal for the equation of
state at the ultimate solid, in a system of N hard spherical particles contained into a pore. We
also find the second virial coefficient for a HD system in a circular pore. Future works will
involve the analytical evaluation of the CI for two particles in other simple shaped pores,
and the analytic study of the CI for three particles in spherical pore.
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Appendix A: Expanded Definition of Z′
I, Z′

II and Z′′

In this appendix it is showed the expanded form of the Z(r,R1,R2) related set of functions
for spherical bodies. We name D to the dimensionality of space and we assume that R1 ≥ R2.
In the present notation an unified point of view for spheres and disks is chosen. The family
of Z functions in arbitrary dimensions reads,

Z(r,R1,R2) =

⎧⎪⎨
⎪⎩

I
(D)

1 (R2) for r ≤ R1 − R2,

I
(D)

2 (r,R1,R2) otherwise,

0 for r > R1 + R2,

(49)

Z′
I(r,R1,R2) =

⎧⎪⎨
⎪⎩

I
(D)

1 (R1) − I
(D)

1 (R2) for r ≤ R1 − R2,

I
(D)

1 (R1) − I
(D)

2 (r,R1,R2) otherwise,

I
(D)

1 (R1) for r > R1 + R2,

(50)

Z′
II(r,R1,R2) =

⎧⎪⎨
⎪⎩

0 for r ≤ R1 − R2,

I
(D)

1 (R2) − I
(D)

2 (r,R1,R2) otherwise,

I
(D)

1 (R2) for r > R1 + R2,

(51)

Z′′(r,R1,R2) =

⎧⎪⎨
⎪⎩

V∞ − I
(D)

1 (R1) for r ≤ R1 − R2,

V∞ − I
(D)

1 (R1) − I
(D)

1 (R2) + I
(D)

2 (r,R1,R2) otherwise,

V∞ − I
(D)

1 (R2) − I
(D)

1 (R2) for r > R1 + R2,

(52)

where I
(D)

1 (R1) is the volume of the D-sphere with radio R1 (the expression for D = 3 and
D = 2 are in (11, 26)), and I

(D)

2 (r,R1,R2) is the volume of intersection of two D-spheres
with radii R1 and R2, separated by a distance r in the partial overlapping configuration (the
expression for D = 3 and D = 2 are in (13, 28)).

Appendix B: Distribution Functions in the Additive-in-Pore System

Assuming an additive-in-pore system, i.e. AB = A + B , PA = P − A and PB = P − B , the
distribution functions for two HD or HS into a spherical pore (from (14, 15) and (29, 30))
take the form

g2(rAB) = (
QP

2

)−1

{
I

(D)

2 (rAB,P − B,P − A) for A + B ≤ rAB ≤ 2P − (A + B),

0 otherwise,
(53)

ρ1(rA) = (
QP

2

)−1

⎧⎪⎨
⎪⎩

max[I (D)

1 (P − B) − I
(D)

1 (A + B),0] for 0 ≤ rA ≤ abs[P − A − 2B],
I

(D)

1 (P − B) − I
(D)

2 (rA,P − B,A + B) otherwise,

0 for rA > P − A,

(54)
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the ρ1(rB) function can be found by the permutation of symbols A ↔ B in (54). If we have
equal radii spherical particles, expressions become

g2(rAA) = (
QP

2

)−1

{
I

(D)

2 (rAA,P − A,P − A) for 2A ≤ rAA ≤ 2(P − A),

0 otherwise,
(55)

ρ1(rA) = (
QP

2

)−1

⎧⎪⎨
⎪⎩

max[I (D)

1 (P − A) − I
(D)

1 (2A),0] for 0 ≤ rA ≤ abs[P − 3A],
I

(D)

1 (P − A) − I
(D)

2 (rA,P − A,2A) otherwise,

0 for rA > P − A.

(56)
Although the existence of the exact one body distribution function for two HS in a spherical
pore is mentioned in [66], neither explicit expression was shown, nor further analysis was
performed there.
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